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Linking cargo to vesicle formation: receptor tail interactions
with coat proteins
Tomas Kirchhausen*, Juan S Bonifacino† and Howard Riezman‡

How soluble cargo molecules concentrate into budding
vesicles is the subject of intensive current research.
Clathrin-based vesiculation from the plasma membrane and
the trans-Golgi network constitutes the best described system
that supports this sorting process. Soluble ligands bind to
specific transmembrane receptors which have been shown to
interact directly with clathrin adaptor complexes, components
of clathrin coats. At the same time, these clathrin adaptors
facilitate clathrin coat assembly and probably regulate the
recruitment of the rest of the coat components. Recent
studies have looked at both the interaction of receptor tails
with adaptors and the assembly of the clathrin coat. Progress
has also been made in elucidating how soluble cargo
molecules may be concentrated for exit from the endoplasmic
reticulum.
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CTLA4 cytotoxic T lymphocyte antigen 4
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Introduction
Vesicular traffic between intracellular compartments re-
quires special mechanisms to ensure the selective move-
ment of proteins and lipids from the donor to the acceptor
organelle. In general, this problem of selection has been
solved by the concentration of specific cargo molecules
into vesicles that are formed in a controlled way and
which then fuse with the target organelle. The first step
in this form of traffic is the binding of cargo molecules to
the lumenal or extracellular domain of a transmembrane
receptor. This is followed by concentration of receptors
through interaction with a protein coat that is also required
for vesiculation of the membrane. It is likely that cargo
concentration and coat formation are linked in order to
ensure efficient cargo loading into the assembling vesicles.
The vesicles then pinch off from the source membrane in
the budding step. Finally, the vesicles are targeted to, and
fuse with, the acceptor compartment.

In this review, we focus primarily on the most recent
developments in the study of clathrin-coated pits and
vesicles, the best understood of the vehicles for moving
receptors and ligands from the plasma membrane and the
trans-Golgi network (TGN) to the endosome. We also sug-
gest some speculative parallels of clathrin-coated vesicles
with endoplasmic reticulum (ER)-derived COPII-coated
vesicles, major vehicles in ER→Golgi vesicular traffic (see
this issue, Kuehn and Schekman, pp 477–483).

Clathrin-coated pits and vesicles
The main structural component on clathrin-coated vesicles
is clathrin, a trimeric scaffold protein, which organizes
itself into cagelike lattices (reviewed in [1]). Clathrin has
the shape of a triskelion, where each one of the three
legs is made of a heavy and a light chain. The extended
conformation of a clathrin leg allows it to pack along a
lattice edge, forming the characteristic open hexagonal and
pentagonal facets of the coat. The assembly of a clathrin
lattice on the cytosolic side of the plasma membrane or
TGN membrane occurs during the formation of a coated
pit, and a section of membrane is ultimately captured into
a coated vesicle. Clathrin is thus an organizing framework
for the proteins that carry out receptor sorting, membrane
budding, and other steps in the cycle of vesicle assembly,
uncoating and fusion.

The major proteins that drive clathrin coat formation are
the ‘clathrin AP (adaptor protein) complexes’ or ‘clathrin
adaptors’, heterotetramers that couple coated pit assembly
to the entrapment of membrane receptors. Endocytic
coated pits and coated vesicles contain the AP-2 complex,
while coated buds and coated vesicles derived from the
TGN contain the related complex AP-1. AP-2 contains
two large chains or ‘adaptins’ (one α chain and one β1
or β2 chain), a medium chain (µ2), and a small chain
(σ2). AP-1 contains the adaptins γ and β1 together with
the medium µ1 and small σ1 chains (reviewed in [1–3]).
The first hint of the existence of a third AP complex
came from the identification in the yeast genome of open
reading frames whose sequences were highly related to the
known subunit sequences of AP-1 and AP-2 [4,5]. More
recently, cDNAs from mammalian sources corresponding
to related AP sequences have also been isolated. The
newest member of the family is AP-3, a complex found in
mammalian cells that contains the δ and β3 chains together
with the smaller µ3 and σ3 chains [6•,7•]. This complex,
however, is not thought to interact with clathrin.

Clathrin coat assembly
The current view of the recruitment of clathrin coat
components to membranes is that APs are first recruited
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from the cytosol to the membrane. Little is known about
the requirements for recruitment of AP-2 to the plasma
membrane. Recruitment of APs to the TGN is influenced
by ADP-ribosylation factor (ARF) and GTPγS [8–10]. The
presence of receptor tails, known binding partners for
APs (see below), also stimulates AP-1 recruitment to the
TGN [10,11]. However, receptor tails are not likely to
represent the sole determinant responsible for targeting
APs to membranes because the former are known to be
present in compartments to which APs are not normally
recruited. Therefore, a membrane-bound, high-affinity
docking apparatus has been postulated (Figure 1). The
identity of the putative AP docking apparatus and how
it could work remain unknown. Two studies [12,13]
have identified membrane proteins that bind AP-1, but
their relevance to AP recruitment has not yet been
demonstrated.

The probable next step in clathrin coat assembly is the
binding of clathrin to membrane-bound AP complexes.
Assembly of the coat is highly coordinated, involving the
recruitment of at least 60 clathrin trimers and 20–30 APs.
Early evidence based on reconstructed images obtained
by electron microscopy of coats suggested that the most
distal portion of the clathrin leg, known as the terminal
domain, is in contact with APs [14]. The β chains of
AP-1 and AP-2 are sufficient to interact with clathrin and
drive the formation of coats [15]. These chains of the
AP complex contain an amino-terminal core domain and
a carboxy-terminal ‘ear’, which are linked by a hinge. The
interaction with clathrin is mediated through the hinge
[16]. Phosphorylation of the hinge seems to prevent the
association of AP-2 with clathrin and this may be part
of the mechanism by which APs initiate and coordinate
clathrin coat assembly [17•]. Evidence for a relatively
high-affinity interaction between the α chain of AP-2 and
clathrin has also been reported [18] but the biological
significance of this association is not clear. Interestingly,
AP-3, which is found in clusters associated with endosomal
membranes, lacks a recognizable clathrin-binding motif in
the β3 hinge region [19].

A recently discovered component of endocytic clathrin-
coated pits and vesicles is Eps15, originally defined as
a substrate for phosphorylation by the epidermal growth
factor receptor [20]. Eps15 binds to the α chain of AP-2
[21] and colocalizes with clathrin at the plasma membrane
[22,23]. The role of Eps15 in coat formation remains to
be established. Its carboxy-terminal segment has a binding
site for the α ear of AP-2 [21,24]. Its amino-terminal
segment contains three Eps homology (EH) domains,
modules of 70–90 amino acids that are also present in
several yeast proteins including End3p and Pan1p; these
proteins are required for endocytosis and organization of
the actin cytoskeleton [25–27]. The preferred localization
of Eps15 to the rims of coated pits and not in other regions
of the coat [22] was unexpected as AP-2, its binding
partner, is located throughout the coat. This result suggests

that Eps15 might undergo cycles of binding to and release
from APs during coat assembly. Phosphorylation of Eps15
in response to epidermal growth factor stimulation of
cells does not affect its intracellular distribution [22];
whether or not the function of Eps15 is linked to signal
transduction pathways and receptor downregulation is
clearly a question for future studies. Another protein that
is highly related to Eps15 has been found [28] and it may
be that related proteins are required at different locations
of clathrin-coated-vesicle formation.

Internalization signals
The components of clathrin coats are in a position
to interact with the cytosolic tails of transmembrane
receptors, which have been shown to carry specific signals
that direct both their rapid internalization and other
intracellular targeting steps. The signals are sequences
or structural motifs, many of which have either a critical
tyrosine residue or a pair of leucine or bulky hydrophobic
residues and are accordingly known as ‘tyrosine-based’
or ‘dileucine-based’ signals (reviewed in [29–31]) (see
Table 1 [32–38]). There is now extensive evidence
indicating that tyrosine-based signals bind directly to the
AP-2 complex and that this binding is the event that
mediates the concentration of certain plasma membrane
proteins within clathrin-coated pits ([39]; reviewed in
[31]). Recent experiments suggest that dileucine-based
signals also interact with AP-2 [40•], although they
most likely have a binding site different from that of
tyrosine-based signals [41•]. As would be expected for
steps dependent on interaction with a limited number
of recognition molecules, internalization mediated by
both tyrosine-based and dileucine-based signals is a
saturable process [41•]. An important characteristic of
both tyrosine-based and dileucine-based signals is that
subsets of these signals are involved in additional sorting
processes such as targeting to lysosomes, specialized
endosomal/lysosomal compartments, the TGN or the
basolateral plasma membrane of polarized epithelial cells
(reviewed in [30,31]). Thus, some of these signals are
likely to be recognized at intracellular sites other than the
plasma membrane, probably by adaptor complexes such as
AP-1 or AP-3.

One development in the past few years has been the
realization that internalization signals are much more
diverse than was originally thought. This is true not
only of tyrosine-based and dileucine-based signals, which
are known to be highly degenerate, but also of an
assortment of other cytosolic domain sequences that
bear no obvious resemblance to classical internalization
signals (Table 1). Signal diversity may be a critical
feature of the clathrin coated vesicle sorting machinery.
As the ability to concentrate in clathrin-coated pits may
not require high affinity, it is possible that even weak
interactions of rather nondescript sequences with AP-2 or
other components of the clathrin coats may be sufficient
to effect internalization. The organization of the coat,
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Figure 1
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The recognition of tyrosine-based endocytic signals in transmembrane cargo receptors by AP-2 complexes is enhanced by clathrin coats and
by 3′ phosphoinositides. The figure shows proposed models for the capture of membrane-bound cargo receptors by clathrin-coated pits.
(a) (i) AP-2 complexes are first targeted from the cytosol to the plasma membrane by interaction with their putative membrane-bound ‘docking’
complex. (ii) At this point, AP-2 interacts with cytosolic clathrin to form the lattice of coated pits. (iii) AP-2 located in partially formed coated
pits displays a clathrin-dependent increase in the affinity of the µ2 chain of AP-2 for transmembrane receptor tails. (This increase is represented
by the change from a triangular to a rectangular ‘gap’ in AP-2.) (iv) This increase leads to the capture of mobile cargo receptors (v) into the
coated pit. It is proposed that the linkage between clathrin binding to APs and the increased affinity of the APs for receptors ensures that
coated pit assembly is coupled to receptor sorting. (b) (i) AP-2 complexes targeted to the plasma membrane by the putative membrane-bound
AP docking complex can (ii) interact with membrane-bound 3′ phosphoinositides (PtdIns 3-P), leading to an increase in the affinity of the µ2
chain of AP-2 for the tyrosine-based endocytic signal located in the cytoplasmic tail of transmembrane cargo receptors. The receptor is shown
as bound to AP-2 at this point. (iii) The AP-2–receptor complex recruits cytosolic clathrin to form a coated pit or can be captured by available
clathrin already located at the edge of a coated pit. Reproduced with permission from [45•].

with multiple copies of AP-2 being immobilized on
a clathrin lattice, and the tendency of some plasma
membrane proteins to oligomerize may provide the
conditions for the generation of strong avidities from
interactions that are weak at a bimolecular level. The
combination of diverse internalization signals within the

same cytosolic tail may also allow multivalent attachment
to AP-2, thus providing for stronger interactions with
the internalization or intracellular sorting machineries.
Indeed, tyrosine-based signals, dileucine-based signals and
acidic clusters are often found in combinations; the most
notable examples of this occurrence are found in the two
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Table 1

Internalization signals.

Signals* Example of signal sequences* Proteins containing the signal References

Tyrosine-based (NPXY-type) FDNPVY LDL receptor† [32]
Tyrosine-based (YXXØ-type) YKYSKV CI mannose-6-phosphate receptor‡ [33]
Dileucine-based DKQTLL CD3-γ [34]
Acidic clusters WQEECPSDSEEDEGRGER Furin [35]
Dilysine (KKFF-type) KRFY VIP36§ [36]
Ubiquitin addition DAKSS Yeast α-factor receptor [37]
Synaptic vesicle targeting EVVDIMRVNV VAMP-2/synaptobrevin-2# [38]

*The single-letter amino acid code is used in these columns. X represents any amino acid and Ø represents a bulky hydrophobic amino acid.
Critical residues are shown in bold type. †LDL, low-density lipoprotein. ‡CI, cation-independent. §VIP36, vesicle integral protein 36. #VAMP-2,
vesicle-associated membrane protein-2.

mannose-6-phosphate receptors which have all three types
of signal (reviewed in [42]).

Recognition of tyrosine-based signals by AP-2
Despite the growing diversity of known internalization sig-
nals, tyrosine-based signals continue to attract the greatest
attention, not only because of historical reasons — they
were the first to be discovered — but also because they
are the most commonly found among rapidly internalized
proteins. Tyrosine-based signals are characterized by the
presence of a critical tyrosine residue within an otherwise
degenerate sequence context (reviewed in [31]). Exten-
sive analyses of the functional importance of residues
neighboring the critical tyrosine residue have established
that tyrosine-based signals conform to various sequence
motifs, the most common being NPXY and YXXØ
(single-letter code for amino acids, where X represents any
amino acid and Ø represents a bulky hydrophobic amino
acid; see Table 1). Because of their variability, the residues
at the Ø and X positions may determine the affinity and
fine specificity of the interaction of the signals with the
different adaptors and, consequently, may determine the
rates of internalization of different proteins as well as the
likelihood that the proteins will undergo sorting at some
intracellular compartment.

Recent advances in the study of protein–protein inter-
actions have allowed detailed analyses of the specificity
of recognition of tyrosine-based signals by clathrin coat
components. In vitro binding assays have demonstrated
a direct interaction of tyrosine-based signals with AP-2
[40•,43,44•]. Screening of cDNA libraries using the
yeast two-hybrid system has identified µ2, the medium
chain of the AP-2 complex, as a recognition molecule
for tyrosine-based signals [43]. This observation was
confirmed by various in vitro binding assays, including
binding of in vitro translated, labeled µ2 to glutathione-
S-transferase (GST)–tyrosine-based-signal fusion proteins
[43] and photoaffinity labeling of the AP-2 complex with
tyrosine-based signals [45•]. In addition, µ2 is capable of
selecting peptides encoding tyrosine-based signals from
combinatorial peptide libraries [46•]. Finally, the fine
specificity of interaction of tyrosine-based signals with µ2
correlates with the interaction of tyrosine-based signals

with the complete AP-2 complex [46•] as well as with
the known sequence requirements for function of the
signals in vivo (reviewed in [29,30]). All of these studies
have demonstrated that µ2 is capable of binding to
many different tyrosine-based signals, although it has a
preference for signals that have basic residues at the X
positions [46•]. The context in which the signals are found
in the cytoplasmic domain also appears to be an important,
albeit less predictable, determinant of interactions [47•].

Regulation of the interaction of tyrosine-based
signals with AP-2
The entrapment of plasma membrane proteins within
clathrin-coated pits can be subject to regulation by
modifications of both the tyrosine-based signals and the
AP-2 complex. With regard to the tyrosine-based signals,
phosphorylation of the critical tyrosine residue has been
shown to abrogate interaction with µ2/AP-2 [46•,48•]. This
modification is thought to play a role in the regulation of
the internalization of the T cell co-receptor cytotoxic T
lymphocyte antigen 4 (CTLA4) [48•]. Phosphorylation of
other residues outside the signal could modify the local
conformational context, making the signals more or less
accessible for interaction with AP-2. Another important
determinant of interactions could be the oligomeric state
of the plasma membrane proteins, as the linking of two or
more signals would be expected to increase dramatically
the avidity for the immobilized AP-2 complexes. All of
these processes could be triggered by binding of ligands
to the endocytic receptors, thus providing a means of
regulating receptor concentration within clathrin-coated
pits on the basis of the occupancy state of the receptors.

Modification of AP-2 might be another way to regulate
the recognition of tyrosine-based signals. Binding of
AP-2 to clathrin cages, for instance, has been shown
to increase the affinity of AP-2 for peptides encoding
tyrosine-based signals [45•]. This increase is probably due
to a conformational change in the AP-2 complex induced
by interaction with clathrin [49]. A consequence of this
affinity modulation might be that endocytic receptors
are preferentially recruited to AP-2 that is pre-assembled
with clathrin (see Figure 1). The AP-2 complex has also
been shown to undergo phosphorylation in vivo [17•],
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and it would be interesting to examine whether this
phosphorylation affects the recognition of tyrosine-based
signals. The APs are large protein complexes that may re-
spond to additional signals. It has recently been observed
that 3′-phosphorylated phosphoinositides enhance the
interaction of AP-2 with tyrosine-based endocytic signals
[45•]. This finding may help to explain the importance of
phosphoinositide 3′ kinases in membrane traffic (Figure 1).

β-arrestin as a clathrin adaptor
Until recently, all accumulation of endocytic proteins
within clathrin-coated pits was explained on the basis of
interactions with AP-2. A study published last year [50•]
offers an example of another way of linking endocytic
proteins to clathrin lattices. The study shows that binding
of agonist to the β2-adrenergic receptor causes phosphory-
lation of the receptor followed by binding of the cytosolic
protein β-arrestin to the cytosolic domain of the receptor.
β-arrestin then interacts directly with clathrin, leading to
concentration of the receptor in clathrin-coated pits and
its subsequent internalization. These observations suggest
that binding to AP-2 is not an obligatory requirement for
concentration within clathrin-coated pits and that other
ways of linking receptors to clathrin may be equally
capable of mediating internalization. This mechanism may
be relevant for other G-protein-coupled receptors and
signal transducing receptors that bind cytosolic proteins
upon activation. Moreover, it is conceivable that receptors
with large cytoplasmic domains may be able to reach
into the clathrin lattice without a need for intermediary
molecules.

Parallels of clathrin-coated-vesicle transport
with transport between the ER and the Golgi
It has been known for several years that different secretory
proteins exit the ER at distinct rates. Several attempts to
find signals within secretory proteins that could account
for their disparate exit rates met with failure. With the
discovery of the quality control system in the ER lumen,
it was thought that these different transport rates could be
explained by retention of proteins due to their differences
in processing, folding, or assembly in the ER. However,
recently it has become clear that cargo proteins are
concentrated in exit sites or vesicles budding from the ER
[51,52]. More recently, a new class of small proteins with
homology to the yeast protein Emp24p has been found
that could play a role in this concentration event.

The primary evidence for such a role came from studies
showing that the emp24 mutation in Saccharomyces cerevisiae
had a deleterious effect on the ER→Golgi transport of
only some secretory proteins. For one of the affected
proteins, invertase, it was shown that this defect was not
due to a delay in folding or oligomerization. Emp24p
was concentrated in ER-derived COPII-coated vesicles;
this fact led to the hypothesis that the Emp24p-related
proteins act to concentrate cargo molecules into budding
vesicles [53]. The emp24 mutation also caused secretion

of Kar2p, a lumenal ER chaperone, and could suppress a
deletion of the SEC13 gene which encodes a component of
the COPII vesicle coat [54]. On the basis of indirect data,
it was concluded that Emp24p is required for efficient
vesicle formation [55], but a subsequent study showed
directly that ER membranes without Emp24p formed
vesicles efficiently [56•].

Several other members of this family have been found;
the first, gp25L, co-purified with calnexin [57]. Other
members have been isolated from COPII-coated vesicles
[56•] and COPI-coated vesicles [55,58•]. In all cases, the
Emp24 family members that have been found are major
components of the vesicles, suggesting that they have an
important function.

All eight members of the yeast Emp24 family are
type I membrane proteins with overall sequence identity
of about 20–25%. Two pairs of these sequences (one
pair encoded by open reading frames YAR002A and
YGL002W, and the other by YAL007C and YOR016C)
show much more extensive homology between members
of each pair, suggesting overlapping functions. The most
variable region is found at the amino-terminal end of
the molecule and, as a result of this diversity, could
be involved in selective binding of cargo. There are
two highly conserved cysteine residues in this domain
that are characteristic of protein trafficking receptors,
but no direct evidence for cargo binding has yet been
obtained. Following this domain is a region of predicted
coiled-coil structure which could be involved in a protein
assembly reaction. Clear evidence has been presented
that at least two members of the yeast family, Emp24p
and Erv25p, are functionally and physically associated
with each other [56•]. The membrane-proximal portion
of the lumenal domain is highly conserved, suggesting
that it may play a common role among the different
members. The transmembrane domains of Emp24 family
members are also conserved, and typically contain polar
residues. These relatively polar transmembrane domains
are likely to be associated with transmembrane domains
of other proteins, perhaps other Emp24 family members,
to mask these polar residues. Finally, the cytoplasmic
tails of these proteins are variations on a common
theme. All of them have a conserved glutamine which
may be found at the membrane–cytosol interface. The
membrane-proximal sequence could form an amphipathic
helix, with a hydrophobic residue three residues after
the glutamine and one or two conserved phenylalanine
residues a turn of the helix later. Three members of the
Emp24 family contain a typical dilysine ER-localization
sequence of the KXKXX (single-letter code for amino
acids) type; four contain basic residues near the carboxyl
terminus, but would not be predicted to be efficient
dilysine-type signals; and one, Emp24p, contains no basic
residues near the carboxyl terminus. The role of the
cytoplasmic tail is very likely to be in the binding of
cytoplasmic coat proteins (see below), probably both COPI
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and COPII, as members of the Emp24 family are found
in both vesicle populations. If these proteins act as cargo
receptors for traffic between the ER and the Golgi, each
one would have to cycle between the two organelles.

Recent experiments have studied the interaction of
cytoplasmic tails of different Emp24 family proteins
with COPI proteins [59]. This study suggested that the
different tail sequences bind to different subcomplexes of
COPI. Tails with dilysine motifs bound α, β′, and ε COP
(B subcomplex), while sequences without the dilysine
motif bound β, γ, and ζ COP (F subcomplex). The latter
binding was dependent upon the FF (single-letter code
for amino acids) sequence in the tails while the former was
not. The physiological relevance of these data remains to
be shown because the binding efficiency was extremely
low (<0.5% of the COP subunits were bound) and because
the tails with dilysine signals that bound the B subcomplex
also had an FF sequence in a conserved position. Another
study [58•] examined the binding of a tail with basic
residues that were not in the conserved positions typical of
dilysine motifs. Replacement of the basic residues or the
FF residues influenced binding to COPI, but the effect
was much greater when the FF motif was replaced. No
COPI subcomplexes were seen in this study. Comparison
of the interactions of the tails with both COP complexes
and controlled mutagenesis experiments will be necessary
to understand better the role played by these cytoplasmic
tails in protein transport. An interesting parallel between
the putative coat-binding sequences in these proteins and
sorting signals in proteins that bind to adaptins is the
possible multiplicity of signals in one tail allowing for
several trafficking steps or, possibly, multiple interactions
at one step.

Conclusions
In the past few years we have witnessed a significant
increase in our knowledge of how cargo molecules,
bound to receptors, are concentrated into forming vesicles
through interactions of receptor tails with vesicle coat
proteins. A diverse set of signals in the receptor tails
can mediate this interaction. Even for the best described
system, the clathrin-based pathway, the precise sequence
of events in vesicle formation still needs to be worked
out. During or after receptor–adaptor interaction, the coat
is assembled in a coordinated manner. New proteins
participating in this process are still being discovered.
We are just breaking the surface in our understanding
of the regulation of clathrin coat assembly by protein
modification and regulatory molecules. A first glimpse
suggesting a parallel mechanism for how cargo molecules
are transported from the ER comes from the recent
discovery of yeast mutations that produce a phenotype
expected for a mutation in an ER cargo receptor.
However, this work is at a very early stage and more
direct experiments will be necessary to examine cargo
concentration in this system.
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